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Abstract

In this paper, we consider the Schrödinger equation in one space-dimension with
potential and we aim at exhibiting dynamic interaction phenomena produced by the
potential. To this end, we focus our attention on the time-asymptotic behaviour of
the two first terms of the Dyson-Phillips series, which gives a representation of the
solution of the equation according to semigroup theory. The first term is actually
the free wave packet while the second term corresponds to the wave packet resulting
from a first interaction between the free solution and the potential. In order to
follow a method developed in a series of papers and aiming at describing propagation
features of wave packets, we suppose that both the potential and the initial datum are
in bounded Fourier-frequency bands; in particular a family of potentials satisfying
this hypothesis is constructed for illustration. We show then that the two terms
are time-asymptotically localised in space-time cones which depend explicitly on the
frequency bands. Since the inclination and the width of these cones indicate the
time-asymptotic motion and dispersion of the two terms, our approach permits to
highlight interaction phenomena produced by the potential.
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Keywords. Schrödinger equation, Dyson-Phillips series, wave packet, Fourier-frequency
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1 Introduction

In this paper, we aim at describing the time-asymptotic spatial propagation of an appro-
ximate solution of the Schrödinger equation with potential on the real line, i.e.{

i ∂tu(t) = −∂xxu(t) + V (x)u(t)
u(0) = u0

, (1)
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for all t > 0, where the initial datum u0 is an element of H1(R) and the potential V belongs
to the Sobolev space W 1,∞(R). Under these hypotheses, we show that the solution can be
represented by the Dyson-Phillips series whose truncation at order 2 provides the appro-
ximate solution we consider. In particular, we prove that the two terms of this truncated
series can be written as wave packets. This allows to use the method developed in the
series of papers Ali Mehmeti et al. (2012); Ali Mehmeti and Dewez (2017); Dewez (2018,
2020) which provide time-asymptotic expansions of wave packets in space-time cones. This
method, which can be interpreted as a mathematical formulation of the group velocity prin-
ciple, is mainly based on the hypothesis of initial data in bounded Fourier-frequency bands,
that is to say initial data whose Fourier transform is supported on a bounded interval. Un-
der the hypothesis that the potential is also in a Fourier-frequency band, we apply this
method to each term of the truncated series together with additional arguments to ob-
tain time-asymptotic expansions in cones. These expansions highlight the influence of the
frequencies of the potential on the propagation of the approximate solution, exhibiting in
particular reflection and advanced or retarded transmission phenomena.

To obtain our results, we consider the setting of semigroups (Engel and Nagel, 2000)
where the solution of a linear evolution equation is interpreted as the orbit of the initial
datum under the action of a semigroup. In the case of evolution equations perturbed by
bounded operators, such as the Schrödinger equation (1) described above, classical results
from semigroup theory claim that the dynamics can be still described by a semigroup. In
particular, this perturbed semigroup is the limit in the operator norm of a series called the
Dyson-Phillips series, whose terms are iteratively defined; see Appendix A for more precise
details.

This series has been used in the literature to derive some asymptotic properties of evo-
lution equations. For instance, it has been used in Arlotti and Lods (2014) to characterise
honest solutions of general transport equations; see Banasiak and Arlotti (2006, Sec. 1.2)
for an introduction on honesty theory. As mentioned by the authors, the use of the Dyson-
Phillips series in their study is equivalent to an approach based on the resolvent of the
underlying operator but appears to be robust enough to be applied to other problems for
which the resolvent approach would be inappropriate. The series has also been recently
used in Lods and Mokhtar-Kharroubi (2021) to compute the rate of convergence to equili-
brium of solutions of collisionless kinetic equations with diffuse boundaries. In this setting,
each term has a physical meaning: the n-th term of the Dyson-Phillips series is actually
the solution of the equation after having experienced n rebounds with the boundary.

In the interaction picture in quantum mechanics, this series provides a representation
of the unitary time-evolution operator associated with Schrödinger equations, where the
free Hamiltonian is perturbed by small perturbations; see Weinberg (1995, Sec. 3.5). In
particular, this permits to represent the scattering matrix (or S-matrix or S-operator),
which describes the transition between two states from distant past to distant future, as a
series. In particular, the two first terms of the Dyson-Phillips series can be used to derive
Fermi’s Golden rule in quantum mechanics. This rule provides an approximate but explicit
formula for the transition rate from one energy state to another one; see Sakurai (1993,
Sec. 5.6).

It is also noteworthy that, in scattering theory in physics, the idea of truncating a
series is also used to study the spatial asymptotic behaviour of the wave resulting from
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the interaction with a potential: this is the Born approximation (Sakurai, 1993, Sec. 7.2),
which consists in truncating the series representing the amplitude of the scattered wave.
In particular, the n-th term of this series corresponds to scattering viewed as a n-step
process. In the setting of evolution equations on graphs, a similar interpretation has been
proposed in Ali Mehmeti et al. (2017) where the difference between the absolutely conti-
nuous part of the solution of the Schrödinger equation on a tadpole graph and the solution
of the associated Neumann half-line problem is studied. The authors have proved that this
difference on the queue of the tadpole is actually given by a series whose n-th term can be
interpreted as a wave packet passing from the head of the tadpole into its queue after n
cycles around the head.

Inspired by the above approaches, we consider the truncated Dyson-Phillips series re-
presenting the time-evolution of the Schrödinger equation (1) and study the spatial pro-
pagation for large time of the two first terms. More precisely, if

(
S(t)

)
t>0

denotes the

semigroup generated by the operator
(
i∂xx − iV (x), H3(R)

)
then it can be written as the

Dyson-Phillips series:

S(t) =
+∞∑
n=1

Sn(t) ,

which converges here in the operator norm on H1(R) and the terms are recursively defined;
we refer to Theorem A.4 for a generic statement on the existence and convergence of this
series. Given this, we focus on the following approximate solution of the Schrödinger
equation (1):

2∑
n=1

Sn(t)u0 = S1(t)u0 + S2(t)u0 .

Studying this approximation is relevant not only to present the main lines of our approach
in a simple setting and to develop first arguments for the study of the entire series but
also to obtain first results which are interpretable from a physical point of view. Using the
recurrence relation defining the terms of the series, we prove in this paper that the term
Sn(t)u0(x), for n = 1, 2, can be written as follows

Sn(t)u0(x) =
1

2π

∫
R
Un(t, p) e−itp

2+ixp dp , (2)

for all (t, x) ∈ R × R, where the amplitude Un can be explicitly computed. As proved in
Theorem 2.2, the term S1(t)u0 is actually the free solution and so its amplitude U1 does
not depend on time since it is the Fourier transform of u0. And we refer to Proposition
5.1 for a formula for U2 which depends explicitly on the potential. Here the second term
S2(t)u0 can be interpreted as the wave packet issued from a first interaction between the
free solution and the potential. In particular, the amplitude U2 describes an interaction
between the first term of the Dyson-Phillips series, namely the free solution, and the po-
tential through its Fourier transform.

The two terms S1(t)u0 and S2(t)u0 being given as wave packets, we are in position
to exploit the method developed in the papers Ali Mehmeti et al. (2012); Ali Mehmeti
and Dewez (2017); Dewez (2018, 2020) to study their time-asymptotic propagation. The
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authors are interested in describing precisely the propagation of free wave packets1 of the
form

uf (t, x) =
1

2π

∫
R
U(p) e−itf(p)+ixp dp , (3)

for a sufficiently regular amplitude and compactly supported U : R −→ C and a strictly
convex symbol f : R −→ R. The method is inspired by the group velocity principle in
physics: broadly speaking, this principle claims that the envelope of a free and almost
monochromatic wave packet (its Fourier transform is sharply peaked around a certain fre-
quency p) moves at a speed given by f ′(p), providing then information on the propagation.
In particular, the wave packet (3) can be interpreted as the solution of the following type
of dispersive equation: { [

i ∂t − f
(
D
)]
uf (t) = 0

uf (0) = u0
, (4)

where U is actually the Fourier transform of the initial datum u0; let us note that the
symbol is given by f(p) = p2 in the Schrödinger setting.

To formalise mathematically the group velocity principle, the authors in Ali Mehmeti
et al. (2012) have proposed to consider initial data in frequency bands (and not necessarily
localised around a given frequency). To be precise, the Klein-Gordon equation on a star-
shaped network is studied in Ali Mehmeti et al. (2012) and so the notion of frequency in
this setting is associated with a Fourier-like transform which diagonalises the operator of
the equation; however the ideas of the method remain the same if unitary transforms other
than the Fourier transform are used. To obtain then information on the position of the
solution for long times, they have approximated it by a spatially localised function which
tends to the solution when the time tends to infinity. To obtain such an approximation,
they have precisely applied the version of the stationary phase method given in Hörmander
(2003, Thm. 7.7.5) to a wave packet representation of the solution. Since the principle of
the stationary phase method consists in approximating wave packets (or more generally
oscillatory integrals) by a term including the integrand evaluated at the stationary point
(f ′)−1

(
x
t

)
of the phase, this makes that the approximation is supported in a space-time cone

for a compactly supported amplitude. Information on both the motion and the dispersion
of the wave packet can then be deduced and visualised via the inclination and the width
of the cone.

This approach has been then extended to the case of amplitudes U having integrable
singular points in Ali Mehmeti and Dewez (2017). To do so, the authors use the version
of the stationary phase method given in Erdélyi (1956, Sec. 2.9) which covers the case
of oscillatory integrals with integrable singular amplitudes. A modern formulation of this
version together with a detailed proof is proposed in Ali Mehmeti and Dewez (2017) and
the result is applied to the solution of the free Schrödinger equation on the line. It is
proved that the existence of an integrable singular Fourier-frequency for the initial datum
makes the associated solution time-asymptotically localised around a space-time line given
by this frequency. This shows that the solution travels mainly at the speed given by the
inclination of the line.

Another tool to study the time-asymptotic propagation of wave packets solutions of
equation (4) has been developed in Dewez (2018). An extension of the classical van der

1The expression free wave packet refers here to wave packets having time-independent amplitudes as in
(3).
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Corput Lemma (Stein, 1993, Prop. 2, Chap. VIII) to oscillatory integrals with amplitudes
having integrable singular points and phases with stationary points of real order is given
and used to establish uniform and explicit estimates of the wave packet (3) in space-time
cones. These results have been motivated by the fact that it is not possible to obtain
uniform asymptotic expansions of wave packets in case of singular frequencies as explained
in Ali Mehmeti and Dewez (2017). Hence the precision of an expansion has been removed
in favour of more flexible uniform estimates.

Recently a refinement of the approach based on time-asymptotic expansions has been
given in Dewez (2020). In this paper, an improvement of the technical arguments leading
to expansions in cones of free wave packets is given. This improvement permits to put the
origin of the cone at the mean position of the wave packet at the time when its variance is
minimal. This result improves three points:

• the coefficient of the remainder estimate is minimal for this position of the cone;

• the first term of the expansion has the same mean position as the wave packet;

• the difference between the variances of the wave packet and the first term is constant.

It is worth noting that the original versions of the method proposed in Ali Mehmeti et al.
(2012); Ali Mehmeti and Dewez (2017); Dewez (2018) do not permit such a precision since
these versions forced the cone origin to be at the space-time point (0, 0).

Our main results in the present paper are given in Corollary 4.5 and Theorem 5.7.
Corollary 4.5 provides a time-asymptotic expansion of the first term S1(t)u0 of the Dyson-
Phillips series in a space-time cone together with an explicit and uniform remainder esti-
mate. An estimate of S1(t)u0 outside the cone is also provided, showing especially that
the time-decay is faster outside the cone than inside. In this result, the Fourier transform
of the initial datum u0 ∈ H3(R) is supposed to be a continuously differentiable function
on R supported on the interval [p1, p2], where p1 < p2 are two real numbers. Technically
speaking, Corollary 4.5 is a straightforward application of the above mentioned method for
time-asymptotic expansions of wave packets; more precisely, we apply Theorem 4.4, which
is a slight extension of Dewez (2020, Thm. 1.1), to the representation (2) of S1(t)u0.
Theorem 5.7 provides the same kind of result as Corollary 4.5 for the second term S2(t)u0.
Here we require in addition the Fourier transform of the initial datum to be a C4-function
and 0 /∈ [p1, p2]. Furthermore the Fourier transform of the potential V ∈ L2(R) is supposed
to be a C3-function and to be supported on the interval [a, b], where a < b are two real
numbers. It is noteworthy that our approach does not require any self-adjointness argu-
ment and so complex-valued potentials can be considered; for a real-valued potential, its
Fourier transform is a Hermitian function implying especially that the frequency band is
symmetric, i.e. a = −b. The proof of Theorem 5.7 consists in firstly showing that S2(t)u0
is time-asymptotically close to an explicit free wave packet and secondly in expanding this
free wave packet to one term. We decompose then the proof of Theorem 5.7 into two steps:
first, we show that the amplitude t 7→ U2(t, .) converges sufficiently fast to a continuously
differentiable function W∞ as t tends to infinity. The free wave packet whose amplitude is
given by W∞ provides then the desired approximation of S2(t)u0, the amplitude W∞ being
actually the Fourier transform of a function which may be interpreted as a fictive initial
datum. In particular, we prove that the support of W∞ is contained in [p1+a, p2+b]. Since
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the amplitude U2(t, .) describes an interaction between the potential and the free solution,
this first step amounts to proving a decreasing interaction over time. In the second step,
we apply once again Theorem 4.4 but this time to the wave packet whose amplitude is
given by W∞, providing finally a time-asymptotic expansion for S2(t)u0 in a cone and a
uniform and explicit estimate outside. Similar to S1(t)u0, the time-decay turns out to be
slower in the associated cone than outside.

We interpret now from a physical point of view the two preceding results. First of all,
as explained before, each of the two terms of the Dyson-Phillips series tends to be time-
asymptotically localised in a space-time cone. Corollary 4.5 shows that S1(t)u0 propagates
in the cone delimited by the two lines x

t
= 2p1 and x

t
= 2p2. On the other hand, the second

term S2(t)u0 is rather localised in the cone delimited by x
t

= 2(p1 + a) and x
t

= 2(p2 + b).
Note that the factor 2 comes from the fact we consider the operator −∂xx and not −1

2
∂xx

as it is classically done in quantum mechanics.
To illustrate these results, we refer to Figures 1a and 1b. There we give a representation of
the cones associated with S1(t)u0 and S2(t)u0: the first one is given by the dark grey-shaded
cone with solid lines while the second one is delimited by the dashed lines. To understand
the influence of the potential on the propagation, we compare the cone associated with the
free wave packet S1(t)u0, which is by definition not influenced by the potential, and the
cone associated with S2(t)u0, which is the wave packet issued from a first interaction with
the potential. In both figures, the potential is in a symmetric frequency2 band (namely
a band of the form [−b, b]) as in the case of real-valued potentials. In this case, it is
noteworthy that the cone associated with S2(t)u0 contains always the cone associated with
S1(t)u0.
In the two figures, the initial datum is supposed to be in a positive frequency band but
these frequencies are assumed to be larger in Figure 1a than in Figure 1b. This implies
that the free wave packet in the first case moves faster to the right in space than the free
wave packet in the second case. This can be visualised via the cones: the cone with solid
lines is more inclined to the right in Figure 1a than in Figure 1b.
Regarding the cone associated with S2(t)u0, we observe that the right dashed line is always
more inclined to the right than the right solid line. This means that the second term may
travel faster than the free wave packet, indicating an advanced transmission phenomenon.
On the other hand, the left dashed line is either inclined to the right or to the left:

• in the first case, the second term still travels to the right but a retarded transmission
may occur since the left solid line is more inclined to the right than the left dashed
line;

• in the second case, a part of S2(t)u0 may travel to the left in space, indicating that
a part of S2(t)u0 is reflected by the potential.

Theorem 5.7 together with Corollary 4.5 indicates that, in the case of an initial wave
packet moving to the right in space, the positive frequencies of the potential tend to
accelerate the motion while the negative ones tend to slow it down, even reverse it. Hence
the existence of a retarded transmission or a reflection depends on the frequency bands of
both the initial datum and the potential: for an initial datum in the positive frequency

2In favour of readability, the expression frequency will refer to Fourier-frequency throughout the rest
of the present paper.
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(a) High and positive frequency initial datum.

x

t

(b) Low and positive frequency initial datum.

Figure 1: Illustrations of space-time cones associated with the terms S1(t)u0 and S2(t)u0
– The cones associated with S1(t)u0 and S2(t)u0 are respectively delimited by solid and
dashed lines and the cone origins are put at (0, 0) for the sake of clarity.

band [p1, p2] and a potential in the band [a, b], the left dashed line is inclined to the left if
and only if p1+a < 0. Hence an initial datum with high momentum is less likely to produce
a reflection than an initial datum with small momentum. With very similar arguments,
it is straightforward to extend the above interpretation to the case of negative frequency
bands for the initial datum.
To finish with the interpretation, we emphasise that the cones share the same origins in
the figures for a clearer explanation of the propagation of the two terms. Nevertheless
these origins are not necessarily equal to (0, 0). Indeed, as explained above, the origin of
the cone associated with the free wave packet S1(t)u0 is put at the mean position of the
wave packet at the time when its variance is minimal. Regarding the second term, it is
localised in a cone whose origin is given by the mean position of the free wave packet whose
amplitude is W∞ at the time when the variance is minimal. Since W∞ can be interpreted
as the Fourier transform of a fictive initial datum, it would be an interesting issue to make
explicit the dependence of the second cone origin on the potential V and on the true initial
datum u0 to understand better this fictive initial datum.

It is noteworthy that our results show that, under our assumptions on u0 and V , the
second term S2(t)u0 behaves as a free wave packet for long times. One reason for this pro-
perty may be the following: we recall that Theorem 5.7 holds for initial data in a frequency
band [p1, p2] such that 0 /∈ [p1, p2], together with additional regularity assumptions on û0
and V̂ (that is to say spatial decay assumptions on u0 and V ). From a physical point of
view, this means that the initial wave packet has no zero-velocity component: the proba-
bility of finding the associated free wave packet in a given bounded spatial interval tends
to 0 as t goes to infinity. One may expect that the absence of zero-velocity components
of a wave packet interacting with a short range potential may help to prevent trapped
components after a first interaction.

Since a natural extension of the present work is to apply our methodology to all the

7



terms of the series, an important step will be to determine sufficient hypotheses on both
the initial datum and the potential to assure that each term of the series behaves time-
asymptotically as a free wave packet. This could lead to information on the propagation
of the true solution. From a technical point of view, the two main challenging tasks of
this extension will be firstly to rewrite each term as a wave packet of the form (2) with
explicit amplitude and secondly to study the convergence of the series of expansions and
the series of remainders. A thorough comparison of these future results based on the
Dyson-Phillips series with the classical literature based on spectral analysis, such as Weder
(2000); Goldberg and Schlag (2004); Egorova et al. (2016), would be constructive.

In the present paper, we have focused our attention on potentials in frequency bands
to make explicit the influence of its frequencies on the propagation of the second term of
the Dyson-Phillips series. From a technical point of view, this has been achieved by ex-
panding time-asymptotically this second term and by proving that the resulting expansion
lies in a space-time cone whose inclination depends explicitly on the potential frequencies.
Another extension of our approach will be then to consider potentials which are no longer
in frequency bands. Nevertheless, in this setting, the second term of the Dyson-Phillips
series is no longer in a frequency band, preventing its time-asymptotic expansion from
being localised in a cone. Hence another tool to describe the dynamics of a wave packet
which is not in a frequency band would be required. In view of this, one may use weighted
Lp-norms which provide some information on the spatial localisation. These norms have
already been exploited to establish dispersive estimates for the Schrödinger equation (1)
under some hypotheses on the decay of the potential; we refer for instance to Goldberg
(2007); Schlag (2007); Egorova et al. (2015). For our purpose, it would be relevant to make
time-dependent the weight to take into account the motion and the dispersion of the wave
packet.

The paper is organised as follows: the following section is devoted to the well-posedness
in H1(R) of the Schrödinger equation with potential (1) for initial data in H3(R) and
potentials in W 1,∞(R), and to the Dyson-Phillips series representing the solution. In
Section 3, we introduce the frequency band hypothesis for the potentials and provide an
explicit family of such potentials. In Section 4, we focus on the time-asymptotic behaviour
of the first term of the Dyson-Phillips series; to do so, we give a slight extension of Dewez
(2020, Thm. 1.1) which is then applied to the first term to obtain a time-asymptotic
expansion in a cone and a uniform estimate outside. The time-asymptotic behaviour of
the second term of the Dyson-Phillips series is studied in Section 5; we first provide a
representation of it as a wave packet with time-dependent amplitude, we show then that
this amplitude tends to a constant function when the time tends to infinity and we finally
apply once again the extension of Dewez (2020, Thm. 1.1) to the free wave packet with
the limit amplitude to get the result on the second term. And Appendix A provides some
classical but useful results from classical and functional analyses.
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2 Dyson-Phillips series for the Schrödinger equation

with potential

Let us recall the Schrödinger equation with potential on the line, i.e.{
i ∂tu(t) = −∂xxu(t) + V (x)u(t)
u(0) = u0

, (5)

for all t > 0, where the potential V is an element of the Sobolev space W 1,∞(R); we empha-
sise that the potential is not required to be real-valued in this paper. The aim of the present
section is to assure existence and uniqueness of a solution for the Schrödinger equation (5)
in H1(R) by exploiting the theory of semigroups. We also introduce the Dyson-Phillips
series which provides a representation of the solution as a series.

Before stating these results, let us define some objects that will be used throughout the
rest of this paper.

Definition 2.1. 1. Let Fx→p denote the Fourier transform on L2(R) and F−1p→x its in-
verse. For f in the Schwartz space S(R), the element Fx→pf defines a complex-valued
function on R given by

∀ p ∈ R
(
Fx→pf

)
(p) =

∫
R
f(x) e−ixp dx .

If there is no risk of confusion, we shall note f̂ := Fx→pf in favour of readability.

2. Let A be the operator given by A := i ∂xx with domain D(A) := H3(R) ⊂ H1(R).

3. For V in W 1,∞(R), let BV be the operator defined on H1(R) by

∀ f ∈ H1(R) (BV f)(x) := −i V (x) f(x) a.e .

In this case, the element BV f belongs to H1(R); see for instance Engel and Nagel
(2000, Chap. VI, Lem. 5.20).

Let us prove now existence and uniqueness for the solution of equation (5) and provide
a series representation.

Theorem 2.2. Suppose that u0 belongs to H3(R) and that V belongs to W 1,∞(R). Then
there exists a unique function u : [0,+∞) −→ H3(R) ⊂ H1(R) which is continuously
differentiable with respect to the H1-norm and which satisfies the Schrödinger equation
(5).
Moreover the function u can be represented as follows:

∀ t > 0 lim
N→+∞

∥∥∥∥∥u(t)−
N∑
n=1

Sn(t)u0

∥∥∥∥∥
H1(R)

= 0 ,

where 
S1(t)u0 := F−1p→x

(
e−itp

2
û0(p)

)
Sn+1(t)u0 :=

∫ t

0

Sn(t− τ)BV S1(τ)u0 dτ , ∀n > 1
.
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Remark 2.3. 1. The function u : [0,+∞) −→ H1(R) is called the classical solution of
the Schrödinger equation (5); see Engel and Nagel (2000, Chap. II, Prop. 6.2). The
series

∑
n>1 Sn(t)u0 is called the Dyson-Phillips series for the solution; we refer to

Engel and Nagel (2000, Chap. III, Thm. 1.10) for more details.

2. For each n > 1, the term Sn+1(t)u0 belongs at least to H1(R) for all fixed t > 0 if
u0 ∈ H3(R) and thus it defines a continuous function on R. To evaluate it at any
point x ∈ R, let us define the evaluation operator Ex on H1(R) by

∀ f ∈ H1(R) Exf := f(x) .

Then Ex is a bounded operator from H1(R) into C thanks to the continuous embedding
of H1(R) into

C00(R) :=

{
f ∈ C0(R)

∣∣∣ lim
|x|→+∞

f(x) = 0

}
.

Hence Proposition A.5 is applicable and provides

∀x ∈ R
(
Sn+1(t)u0

)
(x) = Ex

(
Sn+1(t)u0

)
= Ex

(∫ t

0

Sn(t− τ)BV S1(τ)u0 dτ

)
=

∫ t

0

(
Sn(t− τ)BV S1(τ)u0

)
(x) dτ . (6)

Note that the integral defining Sn+1(t)u0 and the integral given in (6) are here in-
terpreted as Bochner-integrals. In particular the integrand of (6) is complex-valued
and, thanks to the construction of the Bochner-integral, it is actually an integral of
Lebesgue-type. This evaluation process will be employed in Sections 4 and 5.

Proof of Theorem 2.2. In order to apply results from semigroup theory, we start by rewri-
ting the Schrödinger equation (5) as an evolution equation of the form{

u̇(t) =
(
A+BV

)
u(t)

u(0) = u0
,

where the operators A and BV are given in Definition 2.1.
Now let us recall that the operator

(
A,D(A)

)
is the generator of the strongly continuous

semigroup
(
T (t)

)
t>0

on H1(R) represented by

∀ t > 0 T (t)f = F−1p→x
(
e−itp

2

f̂(p)
)
, (7)

for f ∈ H1(R). Moreover the operator BV belongs to L
(
H1(R)

)
, the space of bounded

operators from H1(R) into itself; indeed we have∥∥BV f
∥∥2
H1(R) =

∫
R

∣∣V (x)f(x)
∣∣2 dx+

∫
R

∣∣(V f)′(x)
∣∣2 dx

=

∫
R

∣∣V (x)f(x)
∣∣2 dx+

∫
R

∣∣V ′(x)f(x)
∣∣2 dx+

∫
R

∣∣V (x)f ′(x)
∣∣2 dx

6 2
∥∥V ∥∥2

W 1,∞(R)

∥∥f∥∥2
H1(R) ,
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since V ∈ W 1,∞(R). According to Proposition A.2 and Theorem A.3, if u0 ∈ H3(R) =
D(A) then the Schrödinger equation (5) has a unique classical solution belonging to
C1
(
[0,+∞), H1(R)

)
. Moreover the solution is given by

∀ t > 0 u(t) = S(t)u0 ,

where
(
S(t)

)
t>0

is the semigroup generated by the operator
(
A + BV , D(A)

)
and belongs

to D(A) = H3(R) for all t > 0.
Employing now Theorem A.4, the solution of equation (5) can be represented as follows,

∀ t > 0 lim
N→+∞

∥∥∥∥∥u(t)−
N∑
n=1

Sn(t)u0

∥∥∥∥∥
H1(R)

= 0 ,

where S1(t) := T (t) and

Sn+1(t)u0 :=

∫ t

0

Sn(t− τ)BV T (τ)u0 ds .

According to equality (7), we have S1(t)u0 = T (t)u0 = F−1p→x
(
e−itp

2
û0(p)

)
, which ends the

proof.

3 Potentials in bounded Fourier-frequency bands

The main goal of this short section is to introduce and to illustrate the hypotheses on the
potential. Roughly speaking, we assume the potential to be in a bounded frequency band
in order to isolate the effect of the frequencies of the potential on the time-asymptotic
motion of the Dyson-Phillips series terms. For the sake of illustration, we provide also an
explicit family of potentials which verify this frequency band hypothesis.

The hypotheses of interest are given in the following condition.

Condition (Pk[a,b]). Let k ∈ N and let a < b be two finite real numbers.

An element V of L2(R) satisfies Condition (Pk[a,b]) if and only if V̂ is a Ck-function on R
which verifies supp V̂ ⊆ [a, b].

Remark 3.1. 1. The set of functions satisfying Condition (Pk[a,b]) is non-empty. Indeed

if U is a Ck-function supported on [a, b] then it belongs to L2(R). Hence, thanks to
the fact that Fx→p is a bijective map from L2(R) onto itself, there exists V in L2(R)

such that U = V̂ . In particular V satisfies Condition (Pk[a,b]).

2. Under Condition (Pk[a,b]), a potential V is actually analytic because of the boundedness

of the support of V̂ .

3. If a potential V verifies Condition (Pk[a,b]), with k > 1, then it is bounded on R as

well as its first derivative. Indeed the functions p 7−→ V̂ (p) and p 7−→ p V̂ (p) belong
to L1(R) under Condition (Pk[a,b]), which permits to bound the norms ‖V ‖L∞(R) and

‖V ′‖L∞(R). In particular, the potential V belongs to W 1,∞(R) and so the associated
operator BV defined in Section 2 belongs to L

(
H1(R)

)
.

11



4. A potential V satisfying Condition (Pk[a,b]) is not necessarily real-valued: it is real-

valued if and only if V̂ verifies

∀ p ∈ R V̂ (−p) = V̂ (p) .

In this case, the support of V̂ is contained in a symmetric interval centred on the
origin; hence we have especially a = −b.

To illustrate the above Condition (Pk[a,b]), we construct a family of admissible potentials.
It is noteworthy that any element of this family is approximately localised in space around
a given point with arbitrary precision. This is a direct consequence of a more generic result
stated in Lemma A.1; see Section A.

Proposition 3.2. Let k > 1 be an integer, let a, b and x0 be three finite real numbers such
that a < b, and let v be a Ck-function such that supp v ⊆ [−1, 1]. Let V be the element of

L2(R) whose Fourier transform V̂ is the complex-valued function given by

∀ p ∈ R V̂ (p) := v

(
2p− (a+ b)

b− a

)
e−ix0p .

Then V verifies Condition (Pk[a,b]) and satisfies

∀ c > 0

∫
|x−x0|>c

∣∣V (x)
∣∣2dx 6

2

c2
1

b− a
∥∥v′∥∥2

L2(R) .

Proof. Straightforward application of Lemma A.1 to the function V .

4 Time-asymptotic behaviour of the free solution

This section is devoted to the study of the time-asymptotic propagation of the first term
of the Dyson-Phillips series, which is actually the free Schrödinger solution according to
Theorem 2.2. More precisely we show that the first term tends to be time-asymptotically
localised in a space-time cone if the initial datum is in a frequency band. To do so, we apply
the method developed in Ali Mehmeti et al. (2012); Ali Mehmeti and Dewez (2017) and
refined in Dewez (2020), whose main result is slightly extended in Theorem 4.4 below. This
result will be also exploited to study the second term of the Dyson-Phillips series but extra
technical arguments will be required; we refer to Section 5 for the study of the second term.

We start by recalling the definition of a space-time cone related to the (frequency)
interval [p̃1, p̃2] with origin (t0, x0) ∈ R× R.

Definition 4.1. Let t0, x0, p̃1 and p̃2 be four finite real numbers with p̃1 < p̃2.

1. We define the space-time cone C
(
[p̃1, p̃2], (t0, x0)

)
as follows:

C
(
[p̃1, p̃2], (t0, x0)

)
:=

{
(t, x) ∈

(
[0,+∞)\{t0}

)
× R

∣∣∣∣ 2 p̃1 6 x− x0
t− t0

6 2 p̃2

}
. (8)
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2. Let C
(
[p̃1, p̃2], (t0, x0)

)c
be the complement of the space-time cone C

(
[p̃1, p̃2], (t0, x0)

)
in
(
[0,+∞)\{t0}

)
× R .

Remark 4.2. When one considers general dispersive equations of the form (4), the above
cone is defined by the following inequalities:

f ′(p̃1) 6
x− x0
t− t0

6 f ′(p̃2) .

This explains the factors 2 appearing in (8) since the symbol in the Schrödinger setting is
f(p) = p2.

In the rest of this paper, the initial datum will be assumed to satisfy the following
frequency band hypothesis.

Condition (I`[p1,p2]). Let ` ∈ N and let p1 < p2 be two finite real numbers.

An element u0 of H3(R) satisfies Condition (I`[p1,p2]) if and only if û0 is a C`-function on R
which verifies supp û0 ⊆ [p1, p2].

Remark 4.3. 1. Following arguments similar to those of Remark 3.1, one proves that
the set of elements of H3(R) satisfying Condition (I`[p1,p2]) is non-empty and that it
is a set of analytic functions.

2. If u0 satisfies Condition (I`[p1,p2]) then its Fourier transform is an integrable function

on R. Hence for t > 0, the first term S1(t)u0 of the Dyson-Phillips series introduced
in Theorem 2.2 is actually a complex-valued function on R given by

∀x ∈ R
(
S1(t)u0

)
(x) =

1

2π

∫ p2

p1

û0(p) e
−itp2+ixp dp . (9)

Let us now talk briefly about Dewez (2020, Thm. 1.1) and motivate the need for a
slight extension. The method used to obtain Dewez (2020, Thm. 1.1) is entirely based
on the integral representation (9) of the free Schrödinger solution. The proof consists in
firstly making a space-time shift in the above wave packet (9), secondly in factorising the
phase function by the time to get a generic oscillatory integral and finally in applying
carefully a stationary phase method; see Dewez (2020, Thm. 3.3 and 3.4). We mention
that these two results are adaptations of the version of the stationary phase method given
in Ali Mehmeti and Dewez (2017), which is itself a modern and refined version of the results
established in Erdélyi (1956, Sec. 2.9). This adapted version in Dewez (2020) provides a
remainder estimate which is explicit with respect to the space-time shift parameter; note
that this parameter describes actually the origin of the cone. This flexibility allows then to
choose the shift parameter which both minimises the remainder estimate and makes stable
propagation features under time-asymptotic expansions.

However we need here to extend slightly Dewez (2020, Thm. 1.1) because it has been
originally proved for free Schrödinger wave packets with initial data in the Schwartz space,
which is not necessarily the case in the present paper. We mention that the choice for the
Schwartz space in Dewez (2020) has been done for the sake of clarity but a careful look at
the proof shows that the smoothness and decay assumptions on the initial datum can be
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relaxed. Further, in view of the application to two the second of the Dyson-Phillips series,
we extend also Dewez (2020, Thm. 1.1) to wave packets of the form

∀ (t, x) ∈ R× R JU(t, x) :=
1

2π

∫
R
U(p) e−itp

2+ixp dp ,

where the compactly supported amplitude U is not required to be the Fourier transform
of an initial datum u0.

Theorem 4.4. Let ` > 1 be an integer, let p1, p2, p̃1 and p̃2 be four finite real numbers
such that [p1, p2] ⊂

(
p̃1, p̃2

)
. Let U be a C`-function such that

suppU ⊆ [p1, p2] and
1√
2π
‖U‖L2(R) = 1 .

And we define

• t∗ = arg min
τ∈R

(∫
R
x2
∣∣JU(t, x)

∣∣2 dx− (∫
R
x
∣∣JU(t, x)

∣∣2 dx)2) ;

• x∗ =

∫
R
x
∣∣JU(t∗, x)

∣∣2 dx .
Then for all (t, x) ∈ C

(
[p̃1, p̃2], (t

∗, x∗)
)
, we have∣∣∣∣JU(t, x)− 1√

2π
e−sgn(t−t

∗)iπ
4 e−it

(
x−x∗
t−t∗

)2
+ixx−x

∗
t−t∗ U

(
x− x∗

t− t∗

)
|t− t∗|−

1
2

∣∣∣∣
6 C1(δ, p̃1, p̃2)

√∫
R
x2
∣∣JU(t∗, x)

∣∣2 dx− (∫
R
x
∣∣JU(t∗, x)

∣∣2 dx)2 |t− t∗|−δ ,
where the real number δ is arbitrarily chosen in

(
1
2
, 3
4

)
. And for all (t, x) ∈ C

(
[p̃1, p̃2], (t

∗, x∗)
)c

,
we have∣∣∣JU(t, x)

∣∣∣ 6 (C2(p1, p2, p̃1, p̃2)

√∫
R
x2
∣∣JU(t∗, x)

∣∣2 dx− (∫
R
x
∣∣JU(t∗, x)

∣∣2 dx)2
+ C3(p1, p2, p̃1, p̃2)

∥∥U∥∥
L∞(R)

)
|t− t∗|−1 .

All the above constants are explicitly given in Dewez (2020, Thm. 1.1).

Proof. In Dewez (2020), Theorem 1.1 is a straightforward consequence of Corollary 2.5,
which is itself an application of the more general result Theorem 2.2. Following the proof
of this theorem, we rewrite the wave packet JU(t, x) as follows:

JU(t, x) =

∫
R

1

2π
U(p) e−it0p

2+ix0p e
i(t−t0)

(
x−x0
t−t0

p−p2
)
dp ,

where t0, x0 ∈ R, and we apply Theorems 3.3 and 3.4 from Dewez (2020) to the above
rewriting. These two theorems provide asymptotic expansions and uniform estimates of
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generic oscillatory integrals. They require only the amplitude of the integral to be conti-
nuously differentiable on R with compact support, which is the case in the present setting.
This provides then a time-asymptotic expansion of JU(t, x) and a uniform estimate respec-
tively inside and outside the cone C

(
[p̃1, p̃2], (t0, x0)

)
. As in the end of the proof of Corollary

2.5 from Dewez (2020), we finish by setting the origin of the cone: t0 = t∗, x0 = x∗, where
t∗, x∗ ∈ R are defined in the statement of the theorem.
It is noteworthy that the existence of t∗ and x∗ depends on the fact that the (spatial)

variance of
∣∣JU(t0, .)

∣∣2 is well-defined for any time t0 ∈ R. To prove the existence of the
variance, we remark that the present assumptions on the amplitude U are actually suffi-

cient so that
∣∣JU(t0, .)

∣∣2 has a moment of order 2 about any x0 ∈ R for all t0 ∈ R. Indeed
Plancherel theorem and standard properties of the Fourier transform lead to∥∥∥x 7−→ (x− x0) JU(t0, x0)

∥∥∥2
L2(R)

=
1

2π

∥∥∥∂p(p 7−→ U(p) e−it0p
2+ix0p

)∥∥∥2
L2(R)

,

and the right-hand side is well-defined for all t0, x0 ∈ R. In particular, the variance of∣∣JU(t0, .)
∣∣2 is well-defined for any time t0 ∈ R.

Finally we emphasise that the L∞-norm of U appearing in the second inequality of the
theorem is not bounded by the L1-norm of F−1p 7→xU as it is done in Dewez (2020). Indeed we
are not in position to claim that the L2-element F−1p 7→xU is actually an integrable function
so we do not apply here the classical inequality ‖U‖L∞(R) 6 ‖F−1p 7→xU‖L1(R).

For initial data satisfying Condition (I`[p1,p2]), a straightforward application of the pre-

ceding theorem leads to a time-asymptotic expansion of the term S1(t)u0 inside the cone
C
(
[p̃1, p̃2], (t

∗
1, x
∗
1)
)

and a uniform estimate outside, where [p1, p2] ⊂
(
p̃1, p̃2

)
and t∗1 and x∗1

are defined below. This result shows that S1(t)u0 is time-asymptotically close to a term
which is supported on the time-dependent interval

[
x∗1 + 2 p̃1 (t − t∗1), x

∗
1 + 2 p̃2 (t − t∗1)

]
,

providing then information on the motion and the dispersion of S1(t)u0 for t far from t∗1.

Corollary 4.5. Let ` > 1 be an integer, let p1, p2, p̃1 and p̃2 be four finite real numbers
such that [p1, p2] ⊂

(
p̃1, p̃2

)
. Suppose that u0 satisfies Condition (I`[p1,p2]) with ‖u0‖L2(R) = 1

and define

• t∗1 = arg min
τ∈R

(∫
R
x2
∣∣S1(τ)u0(x)

∣∣2 dx− (∫
R
x
∣∣S1(τ)u0(x)

∣∣2 dx)2) ;

• x∗1 =

∫
R
x
∣∣S1(t

∗
1)u0(x)

∣∣2 dx .
Then for all (t, x) ∈ C

(
[p̃1, p̃2], (t

∗
1, x
∗
1)
)
, we have∣∣∣∣∣S1(t)u0(x)− 1√

2π
e−sgn(t−t

∗
1)i

π
4 e
−it
(
x−x∗1
t−t∗1

)2
+ix

x−x∗1
t−t∗1 û0

(
x− x∗1
t− t∗1

)
|t− t∗1|−

1
2

∣∣∣∣∣
6 C1(δ, p̃1, p̃2)

√∫
R
x2
∣∣S1(t∗1)u0(x)

∣∣2 dx− (∫
R
x
∣∣S1(t∗1)u0(x)

∣∣2 dx)2 |t− t∗1|−δ ,
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where the real number δ is arbitrarily chosen in
(
1
2
, 3
4

)
. And for all (t, x) ∈ C

(
[p̃1, p̃2], (t

∗
1, x
∗
1)
)c

,
we have∣∣∣S1(t)u0(x)

∣∣∣ 6 (C2(p1, p2, p̃1, p̃2)

√∫
R
x2
∣∣S1(t∗1)u0(x)

∣∣2 dx− (∫
R
x
∣∣S1(t∗1)u0(x)

∣∣2 dx)2
+ C3(p1, p2, p̃1, p̃2)

∥∥û0∥∥L∞(R)

)
|t− t∗1|−1 .

All the above constants are explicitly given in Dewez (2020, Thm. 1.1).

Proof. It is sufficient to apply Theorem 4.4 to the oscillatory integral (9), which represents
the term S1(t)u0, with U = û0. Condition (I`[p1,p2]) assures in particular that the hypotheses
of Theorem 4.4 are verified.

5 Time-asymptotic behaviour of the wave packet is-

sued by a first interaction with the potential

In this section, we focus on the time-asymptotic propagation of the second term S2(t)u0
of the Dyson-Phillips series. As in the preceding section, the aim is to expand this term
in a well-suited cone to reflect its time-asymptotic localisation in space. In particular, the
frequency band hypothesis on the potential will highlight the influence of the frequencies
of the potential on the propagation of S2(t)u0.

From a technical point of view, we show in the first subsection that the second term
S2(t)u0 can be written as a wave packet with time-dependent amplitude. We prove then
in the second subsection that S2(t)u0 tends to be time-asymptotically close to a free wave
packet, i.e. a wave packet with an amplitude independent from time. To do so, we show
that the time-dependent amplitude converges to a limit amplitude. This step is required
because if we applied Theorem 4.4 directly to S2(t)u0, then the (absolute value of the)
coefficient of the resulting first term of the expansion would depend on time, preventing
from deriving the time-decay rate. In the last subsection, we deduce the time-asymptotic
behaviour of S2(t)u0 by applying Theorem 4.4 to the free wave packet with the limit
amplitude, providing finally a time-expansion of S2(t)u0 in a cone and a uniform estimate
outside.

As explained in the preceding subsection and in the introduction, the cone inclination
gives information on both the motion and the dispersion. Here it is noteworthy that the
inclination of the cone associated with S2(t)u0 depends explicitly on the frequencies of both
the initial datum and the potential, highlighting especially the influence of the frequencies
of the potential on the propagation of this perturbed term.

5.1 Wave packet representation for the second term of the Dyson-
Phillips series

In the only proposition of this subsection, we give a representation of the second term
S2(t)u0 as an wave packet with a time-dependent amplitude.
The approach to prove Proposition 5.1 is based on the explicit formula of S2(t)u0 given
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in Theorem 2.2 and on applications of basic properties of the Fourier transform as well as
Fubini’s theorem. Let us note in particular that the amplitude of the resulting wave packet
is actually supported on the same bounded interval for any time.

Proposition 5.1. Let k > 1 and ` > 0 be two integers and suppose that u0 ∈ H3(R)
and V ∈ L2(R) satisfy respectively Conditions (I`[p1,p2]) and (Pk[a,b]). Let t > 0 and let

W (t, .) : R −→ C be the function defined by

W (t, p) := −i
∫ t

0

W̃ (τ, p) eiτp
2

dτ ,

where we have defined the function W̃ : [0, t]× R −→ C as follows:

W̃ (τ, p) :=
(
V̂ ∗

(
e−iτ ·

2

û0(.)
))

(p) =

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy .

Then the support of W (t, .) is contained in [p1 + a, p2 + b] for all t > 0, and

∀ (t, x) ∈ [0,+∞)× R
(
S2(t)u0

)
(x) =

1

2π

∫
R
W (t, p) e−itp

2+ixp dp .

Proof. Let t > 0 and x ∈ R. By using equality (6) from Remark 2.3 and the Fourier
representation of S1(τ)u0 = T (τ)u0, we obtain(

S2(t)u0
)
(x) =

∫ t

0

(
T (t− τ)B T (τ)u0

)
(x) dτ

= −i
∫ t

0

F−1p→x
(
e−i(t−τ) p

2Fx→p
(
V (x)F−1p→x

(
e−iτ p

2

û0(p)
)
(x)
)

(p)

)
(x) dτ

= −i
∫ t

0

F−1p→x
(
e−i(t−τ) p

2
(
V̂ ∗

(
e−iτ ·

2

û0(.)
))

(p)

)
(x) dτ

= −i
∫ t

0

F−1p→x
(
e−i(t−τ) p

2

W̃ (τ, p)
)

(x) dτ . (10)

Now let us remark that, for any τ ∈ [0, t], the function W̃ (τ, .) is the convolution of two

compactly supported and continuous functions on R. Therefore W̃ (τ, .) is also a continuous
function on R such that

supp W̃ (τ, .) = supp
(
V̂ ∗

(
e−iτ ·

2

û0(.)
))
⊆ [a, b] + [p1, p2] = [p1 + a, p2 + b] ,

for any τ ∈ [0, t]. In particular, we deduce that the support of W (t, .) is also contained

in [p1 + a, p2 + b]. It follows that W̃ (τ, .) is an integrable function and so the quan-

tity F−1p→x
(
e−i(t−τ) p

2
W̃ (τ, p)

)
(x) can be given by the integral representation of the inverse

Fourier transform for integrable functions with respect to the variable p, i.e.

F−1p→x
(
e−i(t−τ) p

2

W̃ (τ, p)
)

(x) =
1

2π

∫
R
W̃ (τ, p) e−i(t−τ)p

2+ixp dp .

Combining this with equality (10) leads to(
S2(t)u0

)
(x) = −i

∫ t

0

(
1

2π

∫
R
W̃ (τ, p) e−i(t−τ)p

2+ixp dp

)
dτ .
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Since the integrand in the preceding double integral is a continuous function on the compact
domain [0, t]× [p1 +a, p2 +b], we can apply Fubini’s theorem to obtain the desired equality,
namely,

(
S2(t)u0

)
(x) =

1

2π

∫
R

(
−i
∫ t

0

W̃ (τ, p) eiτp
2

dτ

)
e−itp

2+ixp dp

=
1

2π

∫
R
W (t, p) e−itp

2+ixp dp .

Remark 5.2. In the preceding result, the Fourier transform V̂ is assumed to be at least a
C1-function to assure that the operator BV introduced in Definition 2.1 belongs to L

(
H1(R)

)
as explained in Remark 3.1 3.

5.2 Limit of the time-dependent amplitude

In this subsection, we are interested in the limit as t tends to infinity of the time-dependent
amplitude W (t, .) defined in Proposition 5.1. This limit is here proved to be a C1-function
with compact support and an upper bound for the convergence speed is provided.

We begin with the study of the sum of two parametric integrals which will be proved
to be the limit of W (t, .) in Proposition 5.4. In the following lemma, we aim at showing
that this sum defines a continuously differentiable function with support contained in the
interval [p1 + a, p2 + b]. We also provide an explicit estimate of one of the two parametric
integrals which will be used to derive an upper bound for the convergence speed.
From a technical point of view, we assume a certain regularity for the Fourier transforms
of the initial datum u0 and of the potential V . This additional assumption is exploited
together with the frequency band hypotheses to apply classical results on parametric in-
tegrals. Let us also emphasise that we assume the frequency 0 to be outside the support
of û0. This assumption seems to be a key point in our approach since it assures that the
integrands defining the parametric integrals do not have singular points.

Lemma 5.3. Let k > 3 and ` > 4 be two integers and suppose that u0 ∈ H3(R) and
V ∈ L2(R) satisfy respectively Conditions (I`[p1,p2]) and (Pk[a,b]). Assume in addition that

0 /∈ [p1, p2]. Let s > 0, p ∈ R and define

• W s
∞,1(p) := −i

∫ s

0

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy eiτp
2

dτ ;

• W s
∞,2(p) :=

1

8

∫ ∞
s

∫ b

a

∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]
e−iτ(p−y)

2

dy τ−3eiτp
2

dτ ;

• W s
∞(p) := W s

∞,1(p) +W s
∞,2(p) .

Then

1. the sum W s
∞ defines a continuously differentiable function on R with support con-

tained in [p1 + a, p2 + b];
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2. for all p ∈ R, ∣∣W s
∞,2(p)

∣∣ 6 r(p) s−2 , (11)

where r : R −→ R is an integrable function defined in (13).

Proof. Let s > 0 and p ∈ R.

1. From the definition of W (t, p) given in Proposition 5.1, where t > 0, we observe
that W s

∞,1(p) = W (s, p). From this, we deduce that W s
∞,1 defines a function on

R with support contained in [p1 + a, p2 + b]. Furthermore W s
∞,1(p) is a parameter-

dependent (τ, y)-integral of a C1-function (actually a C4-function) with respect to p
with integration domain given by [0, s]× [a, b]. So it defines a C1-function on R.

Let us now show that W s
∞,2 defines also a C1-function on R whose support is contained

in [p1 + a, p2 + b]. Let us first prove that it is well-defined for all p ∈ R by showing
that its integrand

f(p, τ, y) :=
1

8
∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]
e−iτ(p−y)

2

τ−3eiτp
2

is absolutely integrable with respect to (τ, y). To this end, we observe that f(p, τ, y) =
0 on the line y = p since û0(0) = 0 by hypothesis on the support of û0; we deduce
that f(p, τ, y) is well-defined for all p ∈ R, y ∈ [a, b] and τ > s. Further we have

∣∣f(p, τ, y)
∣∣ 6 ∣∣∣∣∣18 ∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ τ−3 ;

note that the right-hand side is a (τ, y)-integrable function on [s,+∞)× [a, b] since in

particular the functions V̂ and û0 as well as their three first derivatives are continuous.
Hence the function f(p, ., .) is absolutely integrable and W s

∞,2(p) is well-defined.
Let us now study the support of W s

∞,2 : R −→ C. We note that for fixed τ > s,
f(p, τ, .) is equal to zero outside the interval

Ip :=
{
y ∈ [a, b]

∣∣ p− y ∈ [p1, p2]
}

= [a, b] ∩ [p− p2, p− p1] ,

since V̂ and û0 are respectively supported on [a, b] and [p1, p2]. The interval Ip is
empty for p /∈ [p1 + a, p2 + b] so, in this case, the integral defining W s

∞,2(p) is equal
to 0 proving that

suppW s
∞,2 ⊆ [p1 + a, p2 + b] .

We finish by proving that W s
∞,2 is a C1-function on R. The hypothesis on the regu-

larity of û0 permits especially to show that f(., τ, y) is a C1-function for all y ∈ [a, b]
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and τ > s. Further we have

∣∣∂pf(p, τ, y)
∣∣ 6 ∣∣∣∣∣18 ∂p∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ τ−3
+

∣∣∣∣∣14 y ∂y
[

1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ τ−2
6

∥∥∥∥∥(p, y) 7→ 1

8
∂p∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∥∥∥∥∥
L∞(R×[a,b])

τ−3

+

∥∥∥∥∥(p, y) 7→ 1

4
y ∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∥∥∥∥∥
L∞(R×[a,b])

τ−2 ;

Note that the L∞-norms are well-defined because the functions are supported on the
bounded domain [p1 +a, p2 +b]× [a, b] and continuous thanks to the hypotheses on V̂
and û0. Since the y-integral in W s

∞,2(p) is actually defined over the bounded interval
[a, b], the last right-hand side is (τ, y)-integrable over [s,+∞)× [a, b] and independent
from p. By classical arguments on parametric integrals, we deduce that W s

∞,2 is a
C1-function on R.

By addition, we deduce that the function W s
∞ = W s

∞,1 + W s
∞,2 is also continuously

differentiable with a support contained in [p1 + a, p2 + b].

2. By the definition of W s
∞,2(p), we have

∣∣∣W s
∞,2(p)

∣∣∣ 6 1

8

∫ b

a

∣∣∣∣∣∂y
[

1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ dy
∫ ∞
s

τ−3ds

6
1

16

∫ b

a

∣∣∣∣∣∂y
[

1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ dy s−2 . (12)

Using similar arguments to those of the preceding point, we prove that

r(p) :=
1

16

∫ b

a

∣∣∣∣∣∂y
[

1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]∣∣∣∣∣ dy (13)

defines a continuous function with compact support, so it is in particular integrable,
and verifies inequality (11) according to (12).

In the following proposition, we prove that W s
∞(p) defined in Lemma 5.3 is indeed the

limit of W (t, p) as t tends to infinity. This is achieved by providing an upper bound for
the absolute value of the difference between these two terms, the upper bound tending to
0 as t tends to infinity. Note that the regularity of the Fourier transforms of the potential
and of the initial datum is again used in the following proof to carry out integrations by
parts.
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Proposition 5.4. Let k > 3 and ` > 4 be two integers and suppose that u0 ∈ H3(R) and
V ∈ L2(R) satisfy respectively Conditions (I`[p1,p2]) and (Pk[a,b]). Assume in addition that

0 /∈ [p1, p2].
Let t > 0 and s ∈ (0, t). Then the function W (t, .) introduced in Proposition 5.1 verifies

∀ p ∈ R
∣∣W (t, p)−W s

∞(p)
∣∣ 6 r(p) t−2 ,

where the functions W s
∞ and r have been introduced in Lemma 5.3 .

Proof. Let t > s > 0. We first split the τ -integral in W s
∞,2(p) as follows:

W s
∞,2(p) =

1

8

∫ t

s

∫ b

a

. . . +
1

8

∫ ∞
t

∫ b

a

. . . ,

and we integrate then three times by parts the first term of the preceding sum to obtain:

1

8

∫ t

s

∫ b

a

∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]
e−iτ(p−y)

2

dy τ−3eiτp
2

dτ

= −i
∫ t

s

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy eiτp
2

dτ .

It follows then

W s
∞(p) = W s

∞,1(p) +W s
∞,2(p)

= −i
∫ s

0

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy eiτp
2

dτ

− i
∫ t

s

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy eiτp
2

dτ

+
1

8

∫ ∞
t

∫ b

a

∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]
e−iτ(p−y)

2

dy τ−3eiτp
2

dτ

= −i
∫ t

0

∫ b

a

V̂ (y) û0(p− y) e−iτ(p−y)
2

dy eiτp
2

dτ

+
1

8

∫ ∞
t

∫ b

a

∂y

[
1

p− y
∂y

[
1

p− y
∂y
V̂ (y) û0(p− y)

p− y

]]
e−iτ(p−y)

2

dy τ−3eiτp
2

dτ

= W (t, p) +W t
∞,2(p) .

We apply finally Lemma 5.3 to obtain∣∣W (t, p)−W s
∞(p)

∣∣ 6 ∣∣W t
∞,2(p)

∣∣ 6 r(p) t−2 .

Remark 5.5. The term W s
∞(p) being the limit of W (t, p) as t tends to infinity, it does not

depend in particular on s > 0. So it will be denoted by W∞(p) in the rest of the paper.
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5.3 Time-asymptotic expansion for the second term of the Dyson-
Phillips series

In this last subsection, we exploit the results from the two preceding subsections to derive a
time-asymptotic expansion of S2(t)u0 reflecting its spatial propagation. We first show that
this term is time-asymptotically close to a free wave packet. In particular, the amplitude
of this wave packet is actually given by the above limit W∞. Expanding this free wave
packet as in Corollary 4.5 provides the desired expansion for the term S2(t)u0.

We start by proving that the term S2(t)u0 is time-asymptotically close to a free wave
packet. To do so, we use the inequality given in Proposition 5.4.

Proposition 5.6. Let k > 3 and ` > 4 be two integers and suppose that u0 ∈ H3(R) and
V ∈ L2(R) satisfy respectively Conditions (I`[p1,p2]) and (Pk[a,b]). Assume in addition that

0 /∈ [p1, p2].
Then we have for all (t, x) ∈ (0,+∞)× R,∣∣∣∣S2(t)u0(x)− 1

2π

∫
R
W∞(p) e−itp

2+ixp dp

∣∣∣∣ 6 1

2π

∥∥r∥∥
L1 t
−2 ,

where the functions W∞ and r have been introduced in Lemma 5.3.

Proof. Let (t, x) ∈ (0,+∞)× R. Combining Propositions 5.1 and 5.4 leads to∣∣∣∣S2(t)u0(x)− 1

2π

∫
R
W∞(p) e−itp

2+ixp dp

∣∣∣∣
=

∣∣∣∣ 1

2π

∫
R
W (t, p) e−itp

2+ixp dp− 1

2π

∫
R
W∞(p) e−itp

2+ixp dp

∣∣∣∣
6

1

2π

∫
R

∣∣W (t, p)−W∞(p)
∣∣ dp

6
1

2π

∫
R
r(p) dp t−2 .

Note that the last integral is finite since r ∈ L1(R) according to Lemma (5.3).

We are now in position to obtain a time-asymptotic expansion of the term S2(t)u0.
The proof of the following result consists mainly in expanding to one term the free wave
packet introduced in Proposition 5.6. This is achieved by applying Theorem 4.4 whose
hypotheses are satisfied since the amplitude W∞ has been proved to be continuously dif-
ferentiable function on R with compact support. The resulting expansion is then put into
the inequality of Proposition 5.6 to obtain at the end a time-asymptotic expansion for
S2(t)u0.

Theorem 5.7. Let p1, p2, p̃1 and p̃2 be four finite real numbers such that [p1, p2] ⊂
(
p̃1, p̃2

)
.

Let k > 3 and ` > 4 be two integers and suppose that u0 ∈ H3(R) and V ∈ L2(R) satisfy
respectively Conditions (I`[p1,p2]) and (Pk[a,b]). Assume in addition that 0 /∈ [p1, p2]. Consider
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the function W∞ defined in Lemma 5.3 and define

• JW∞(t, x) =
1

2π

∫
R
W∞(p) e−itp

2+ixp dp ∀ (t, x) ∈ R× R ;

• t∗2 = arg min
τ∈R

(∫
R
x2
∣∣JW∞(t, x)

∣∣2 dx− 1

‖W∞‖2L2(R)

(∫
R
x
∣∣JW∞(t, x)

∣∣2 dx)2) ;

• x∗2 =
1

‖W∞‖2L2(R)

∫
R
x
∣∣∣JW∞(t∗2, x)

∣∣∣2 dx .
Then for all (t, x) ∈ C

(
[p̃1 + a, p̃2 + b], (t∗2, x

∗
2)
)

with t 6= 0, we have∣∣∣∣∣S2(t)u0(x)− 1√
2π

e−sgn(t−t
∗
2)i

π
4 e
−it
(
x−x∗2
t−t∗2

)2
+ix

x−x∗2
t−t∗2 W∞

(
x− x∗2
t− t∗2

)
|t− t∗2|−

1
2

∣∣∣∣∣
6 C1(δ, p̃1 + a, p̃2 + b)

√∫
R
x2
∣∣JW∞(t∗2, x)

∣∣2 dx− 1

‖W∞‖2L2(R)

(∫
R
x
∣∣JW∞(t∗2, x)

∣∣2 dx)2 |t− t∗2|−δ
+

1

2π

∥∥r∥∥
L1 t
−2 ,

where the real number δ is arbitrarily chosen in
(
1
2
, 3
4

)
. And for all (t, x) ∈ C

(
[p̃1 + a, p̃2 +

b], (t∗2, x
∗
2)
)c

with t 6= 0, we have∣∣∣S2(t)u0(x)
∣∣∣

6

(
C2(p1, p2, p̃1 + a, p̃2 + b)

√∫
R
x2
∣∣JW∞(t∗2, x)

∣∣2 dx− 1

‖W∞‖2L2(R)

(∫
R
x
∣∣JW∞(t∗2, x)

∣∣2 dx)2
+ C3(p1, p2, p̃1 + a, p̃2 + b)

∥∥W∞∥∥L∞(R)

)
|t− t∗2|−1 +

1

2π

∥∥r∥∥
L1 t
−2 .

All the above constants are explicitly given in Dewez (2020, Thm. 1.1) and the integrable
function r is defined in Lemma 5.3.

Proof. We define first the following free wave packet:

JW̃∞(t, x) :=
JW∞(t, x)

‖W∞‖2
=

1

2π

∫
R
W̃∞(p) e−itp

2+ixp dp ,

where W̃∞ := W∞
‖W∞‖2 . The amplitude W̃∞ is a L2-normalised and continuously differentiable

function with support contained in [p1 +a, p2 +b] according to Lemma 5.3. The hypotheses
of Theorem 4.4 are then verified and we obtain the following time-asymptotic expansion
of the wave packet JW̃∞ in the cone C

(
[p̃1 + a, p̃2 + b], (t∗2, x

∗
2)
)
,∣∣∣∣∣JW̃∞(t, x)− 1√

2π
e−sgn(t−t

∗
2)i

π
4 e
−it
(
x−x∗2
t−t∗2

)2
+ix

x−x∗2
t−t∗2 W̃∞

(
x− x∗2
t− t∗2

)
|t− t∗2|−

1
2

∣∣∣∣∣
6 C1(δ, p̃1 + a, p̃2 + b)

√∫
R
x2
∣∣∣JW̃∞(t∗2, x)

∣∣∣2 dx− (∫
R
x
∣∣∣JW̃∞(t∗2, x)

∣∣∣2 dx)2 |t− t∗2|−δ ,
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and the following uniform estimate outside,

∣∣∣JW̃∞(t, x)
∣∣∣ 6 (C2(p1, p2, p̃1 + a, p̃2 + b)

√∫
R
x2
∣∣∣JW̃∞(t∗2, x)

∣∣∣2 dx− (∫
R
x
∣∣∣JW̃∞(t∗2, x)

∣∣∣2 dx)2
+ C3(p1, p2, p̃1 + a, p̃2 + b)

∥∥∥W̃∞∥∥∥
L∞(R)

)
|t− t∗2|−1 .

Combining finally the two preceding inequalities multiplied by ‖W∞‖2 and the inequality
given in Proposition 5.6 via the triangle inequality provides the desired results.

A Appendix: Generic results from classical and func-

tional analyses

In this last section, we provide some generic results from classical and functional analyses
which have been used in the present paper.

We start with the following lemma on which the proof of Proposition 3.2 is based.
Lemma A.1 provides a family of functions localised in a bounded frequency band [a, b]
and, at the same time, approximately localised in space in an interval centred on a point
x0 ∈ R with arbitrary precision if the band is sufficiently large. This result, whose proof
lies essentially on Chebyshev’s inequality, is originated from Ali Mehmeti (2013).

Lemma A.1. Let k > 1 be an integer, let a, b and x0 be three finite real numbers such
that a < b, and let ϕ be a Ck-function such that suppϕ ⊆ [−1, 1]. Let f be the element of

L2(R) whose Fourier transform f̂ is the complex-valued function given by

∀ p ∈ R f̂(p) := ϕ

(
2p− (a+ b)

b− a

)
e−ix0p .

Then f̂ is a Ck-function on R supported on the interval [a, b] and f is an analytic function
on R satisfying

∀ c > 0

∫
|x−x0|>c

∣∣f(x)
∣∣2dx 6

2

c2
1

b− a
∥∥ϕ′∥∥2

L2(R) . (14)

Proof. Since ϕ : R −→ C is a Ck-function on R supported on [−1, 1], the Fourier transform

f̂ of f is clearly a Ck-function on R such that

supp f̂ ⊆ [a, b] ;

the boundedness of the support of f̂ implies in particular that f is analytic on R.
Now let us prove inequality (14). For this purpose, we apply Chebyshev’s inequality to the
function f :∫
|x−x0|>c

∣∣f(x)
∣∣2dx 6

1

c2

∫
R
(x− x0)2

∣∣f(x)
∣∣2dx =

1

c2

∫
R
(x− x0)2

∣∣∣(F−1p→xf̂)(x)
∣∣∣2dx , (15)
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for all c > 0. Then by a simple substitution, we have for all x ∈ R,(
F−1p→xf̂

)
(x) =

1

2π

∫
R
ϕ

(
2p− (a+ b)

b− a

)
ei(x−x0)p dp =

b− a
4π

ei
a+b
2

(x−x0) ϕ̂

(
b− a

2
(x0 − x)

)
.

Putting this into inequality (15) provides finally for all c > 0,∫
|x−x0|>c

∣∣f(x)
∣∣2dx 6

1

c2
(b− a)2

16π2

∫
R
(x− x0)2

∣∣∣∣ϕ̂(b− a2
(x0 − x)

)∣∣∣∣2 dx
=

1

c2
1

2π2(b− a)

∫
R

∣∣y ϕ̂(y)
∣∣2dy

=
2

c2
1

b− a
∥∥ϕ′∥∥2

L2(R) ;

note that we have used the substitution y = b−a
2

(x0 − x) to obtain the first equality and

the classical relation (̂ϕ′)(y) = i y ϕ̂(y) together with Plancherel’s theorem to obtain the
second one.

In the rest of the present section, we recall some results from semigroup theory and
functional analysis which are used in Section 2.
Let us remark that the following results are not proved but quoted from the literature
containing their proofs. Furthermore the operators A,B,C and the semigroups

(
T (t)

)
t>0

,(
S(t)

)
t>0

used here are generic and do not refer to the particular objects which are con-
sidered in the preceding sections of this paper.

We recall first the notion of a classical solution for an abstract evolution equation; see
Engel and Nagel (2000, Chap. II, Def. 6.1). Further we recall that if an operator generates
a semigroup on a Banach space, then the classical solution of the evolution equation given
by this operator exists, is unique and corresponds to the orbit of the initial value under
the semigroup; see Engel and Nagel (2000, Chap. II, Prop. 6.2).

Definition and Proposition A.2. Consider the initial value problem{
u̇(t) = Au(t)
u(0) = v

, (16)

for t > 0, where A : D(A) ⊂ X −→ X is the generator of a semigroup
(
T (t)

)
t>0

on the
Banach space X.
A function u : [0,+∞) −→ X is called a classical solution of (16) if u is continuously
differentiable with respect to X, u(t) ∈ D(A) for all t > 0, and u satisfies (16).
If v ∈ D(A) then the function

u : t ∈ [0,+∞) 7−→ u(t) = T (t) v ,

is the unique classical solution of (16).

In the following theorem, we recall that the sum of a generator of a semigroup and a
bounded operator on a Banach space generates a semigroup as well; see Engel and Nagel
(2000, Chap. III, Thm. 1.3).
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Theorem A.3. Let
(
A,D(A)

)
be the generator of a strongly continuous semigroup on a

Banach space X. If B is a bounded operator from X into itself, i.e. B ∈ L(X), then the
operator

(
C,D(C)

)
:=
(
A+B,D(A)

)
generates a strongly continuous semigroup on X.

The Dyson-Phillips series is now introduced in a generic setting: it provides a repre-
sentation as a series of the semigroup generated by the operator

(
A+B,D(A)

)
; see Engel

and Nagel (2000, Chap. III, Thm. 1.10).

Theorem A.4. Let
(
A,D(A)

)
be the generator of a strongly continuous semigroup

(
T (t)

)
t>0

on a Banach space X, and let B ∈ L(X). The strongly continuous semigroup
(
S(t)

)
t>0

generated by
(
C,D(C)

)
:=
(
A+B,D(A)

)
can be obtained as

lim
N→+∞

∥∥∥∥∥S(t)−
N∑
n=1

Sn(t)

∥∥∥∥∥
L(X)

= 0 ,

where S1(t) := T (t) and

∀ v ∈ X Sn+1(t)v :=

∫ t

0

Sn(t− τ)B T (τ)v dτ .

In the final result, we recall that Bochner-type integration and the application of
bounded operators can be interchanged; see Yosida (1980, Chap. V, Sec. 5, Cor. 2).
This result has been used in the present paper to evaluate the terms of the Dyson-Phillips
at any point x ∈ R.

Proposition A.5. Let A be a bounded operator acting between two Banach spaces X and
Y and let J ⊆ R be an interval. If F : J −→ X is a Bochner-integrable function, then
AF : J −→ Y is also a Bochner-integrable function and

A

(∫
J

F (s) ds

)
=

∫
J

AF (s) ds .
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Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Classics in
Mathematics. Springer, Berlin, Heidelberg, 2003. doi: 10.1007/978-3-642-61497-2.

Bertrand Lods and Mustapha Mokhtar-Kharroubi. Convergence rate to equilibrium for
collisionless transport equations with diffuse boundary operators: A new tauberian ap-
proach, 2021. Submitted for publication – https://arxiv.org/abs/2104.06674.

27

https://www.sciencedirect.com/science/article/pii/S0022247X16306564
https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201600218
http://www.sciencedirect.com/science/article/pii/S0022247X20304546
https://doi.org/10.1070/rm9708
http://www.jstor.org/stable/20534937
https://doi.org/10.1007/s00220-004-1140-5
https://arxiv.org/abs/2104.06674


Jun J. Sakurai. Modern Quantum Mechanics, Revised Edition, page 500. Pearson, 1993.
ISBN 978-0201539295.

Wilhelm Schlag. Dispersive Estimates for Schrödinger operators: A survey, pages 255–286.
Princeton University Press, 2007. ISBN 9780691129556. URL http://www.jstor.org/

stable/j.ctt7s1f9.15.

Elias M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Princeton Mathematical Series. Princeton University Press, 1993. ISBN 978-
0691032160.

Ricardo Weder. Lp − Lp
′

estimates for the Schrödinger equation on the line and in-
verse scattering for the nonlinear Schrödinger equation with a potential. Journal of
Functional Analysis, 170(1):37–68, 2000. ISSN 0022-1236. doi: https://doi.org/10.
1006/jfan.1999.3507. URL https://www.sciencedirect.com/science/article/pii/

S0022123699935073.

Steven Weinberg. Quantum Fields and Antiparticles, volume 1. Cambridge University
Press, 1995. doi: 10.1017/CBO9781139644167.007.

Kösaku Yosida. Functional Analysis. Springer-Verlag Berlin Heidelberg New York, 1980.

28

http://www.jstor.org/stable/j.ctt7s1f9.15
http://www.jstor.org/stable/j.ctt7s1f9.15
https://www.sciencedirect.com/science/article/pii/S0022123699935073
https://www.sciencedirect.com/science/article/pii/S0022123699935073

	Introduction
	Dyson-Phillips series for the Schrödinger equation with potential
	Potentials in bounded Fourier-frequency bands
	Time-asymptotic behaviour of the free solution
	Time-asymptotic behaviour of the wave packet issued by a first interaction with the potential
	Wave packet representation for the second term of the Dyson-Phillips series
	Limit of the time-dependent amplitude
	Time-asymptotic expansion for the second term of the Dyson-Phillips series

	Appendix: Generic results from classical and functional analyses

